Development of a Class-Based Multiple Endmember Spectral Mixture Analysis (C-MESMA) Approach for Analyzing Urban Environments
نویسندگان
چکیده
Multiple endmember spectral mixture analysis (MESMA) has been widely applied for estimating fractional land covers from remote sensing imagery. MESMA has proven effective in addressing inter-class and intra-class endmember variability by allowing pixel-specific endmember combinations. This method, however, assumes that each land cover type has an equal probability of being included in the model, and the one with the least estimation error (e.g., root mean square error) was chosen as the “best-fit” model. Such an approach may mistakenly include a land cover class in the model and overestimate its abundance, or it might omit a class from the model and subsequently lead to underestimation. To address this problem, this paper developed a land cover class-based multiple endmember spectral mixture analysis (C-MESMA) method. In particular, a support vector machine (SVM) method with reflectance spectra and spectral indices, including the normalized difference vegetation index (NDVI), the biophysical composition index (BCI), and the ratio normalized difference soil index (RNDSI), were employed to classify the image into six land cover classes: pure impervious surface area (ISA), pure vegetation, pure soil, ISA-vegetation, vegetation-soil, and vegetation-ISA-soil. With the information of land cover classes, an individual MESMA method was applied to each mixed class. Finally, the fractional maps were derived through integrating land cover fractions of each land cover class. Quantitative analysis of the resulting percent ISA (%ISA) and comparative analyses with traditional MESMA indicate that C-MESMA improved the estimation accuracy of %ISA.
منابع مشابه
Modified multiple endmember spectral mixture analysis for mapping impervious surfaces in urban environments
A modified multiple endmember spectral mixture analysis (MMESMA) approach is proposed for high-spatial-resolution hyperspectral imagery in the application of impervious surface mapping. Different from the original MESMA that usually selects one endmember spectral signature for each land-cover class, the proposed MMESMA allows the selection of multiple endmember signatures for each land-cover cl...
متن کاملAn Improved Endmember Selection Method Based on Vector Length for MODIS Reflectance Channels
Endmember selection is the basis for sub-pixel land cover classifications using multiple endmember spectral mixture analysis (MESMA) that adopts variant endmember matrices for each pixel to mitigate errors caused by endmember variability in SMA. A spectral library covering a large number of endmembers can account for endmember variability, but it also lowers the computational efficiency. Theref...
متن کاملEndmember selection for multiple endmember spectral mixture analysis using endmember average RMSE
Multiple endmember spectral mixture analysis (MESMA) models mixed spectra as a linear combination of endmembers that are allowed to vary in number and type on a per pixel basis. For modeling an image using MESMA, a parsimonious set of endmembers is desirable for computational efficiency and operational simplicity. This paper presents a method of selecting endmembers from a spectral library for ...
متن کاملQUANTIFYING THE ECOLOGICAL PATTERNS OF URBAN DENSIFICATION THROUGH MULTIPLE ENDMEMBER SPECTRAL MIXTURE ANALYSIS, LANDSCAPE METRICS, AND FUZZY LOGIC WG VII/4 Human Settlement and Impact analysis
This paper introduces an integrative methodology that has been developed to measure temporal changes in urban morphology based on the techniques of multiple endmember spectral mixture analysis (MESMA), landscape metrics, and fuzzy logic. In order to illustrate an application of the methodology, the paper uses two satellite images acquired in 1990 and 2000 for the metropolitan area of Los Angele...
متن کاملEvaluating Endmember and Band Selection Techniques for Multiple Endmember Spectral Mixture Analysis using Post-Fire Imaging Spectroscopy
Fire impacts many vegetated ecosystems across the world. The severity of a fire is major component in determining post-fire effects, including soil erosion, trace gas emissions, and the trajectory of recovery. In this study, we used imaging spectroscopy data combined with Multiple Endmember Spectral Mixture Analysis (MESMA), a form of spectral mixture analysis that accounts for endmember variab...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 8 شماره
صفحات -
تاریخ انتشار 2016